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Physical Chemistry of Protein Solutions. I. Derivation of the Equations for the 
Osmotic Pressure1 

BY GEORGE SCATCHARD 

Introduction 
The osmotic pressure of a system containing a 

membrane permeable to the solvent and to some 
of the solutes, but impermeable to some solute 
ions, and the distribution of the diffusible ions 
across the membranes were determined for ideal 
solutions by Donnan many years ago.2 Little 
progress has been made toward determining the 
relations between these quantities and the activ­
ity coefficients in non-ideal solutions. More re­
cently Donnan3 has even questioned whether the 
ratio of the osmotic pressure to the molal concen­
tration of the non-diffusible ions approaches RT 
as a limit as this concentraton approaches zero 
but the concentration of diffusible ions remains 
finite. 

It is possible to show that the conditions for the 
approach to this limit are essentially the same as 
the conditions for the approach to the same limit 
of the ratio of the "total osmotic pressure" to the 
total molal concentration as the total concentra­
tion approaches zero. This limit would not neces­
sarily be approached if there were a second non-
diffusible solute maintained at the same concen­
tration on each side of the membrane, and the 
simplicity depends upon the fact that the solutes 
which can diffuse are at the same potential, or ac­
tivity, on the two sides and not necessarily at the 
same concentration.4 We shall also show how the 
changes in the logarithm of the activity coefficient 
of all the solutes with changes in the concentra­
tion of the non-diffusible solute may be calculated 
from the osmotic pressure and t i e equilibrium 
distributions of the diffusible solutes, and shall de­
velop these functions as Taylor series. 

General Equations 

By osmotic pressure we shall mean the differ­
ence in pressure between two solutions at equilib­
rium across a semipermeable membrane when the 
concentration of non-diffusible solutes on one side 
of the membrane is zero, and the pressure on the 
side containing the non-diffusible solute is the at­
mospheric pressure. This pressure is sometime 

(1) Some of these equations were presented at the Buffalo meeting 
of the American Chemical Society, September 10,1943, and are given 
by E. J. Cohn and J. T. Edsall, "Proteins, Amino Acids and Pep­
tides," Reinhold Publishing Company, New York, 1943. This 
paper is so closely related to the studies on plasma proteins of the 
Department of Physical Chemistry of the Harvard Medical School 
that it is given the number V in the series, "Preparation and Proper­
ties of Serum and Plasma Proteins" of that laboratory. 

(2) P. G. Donnan, Z. Elcktrochtm.. 17, 572 (1911). 
(3) F. G. Donnan, Trans. Faraday Soc., 31, 80 (1935). 
(4) A similar relation has already been treated for the effect of gas 

at constant pressure on freezing point depressions (G. Scatchard, 
P. T. Jones and S. S. Prentiss, T H I S JOURNAL, 54, 2676 (1932)). 

called the "oncotic pressure" and sometimes the 
"colloid osmotic pressure" to distinguish it from 
"the total osmotic pressure," which is denned as 
the difference in pressure at equilibrium with pure 
solvent on one side of a membrane impermeable 
to all the solutes. 

It is convenient to express the concentrations 
relative to that of one of the diffusible components 
present in large quantities, though not necessarily 
of the component in largest quantity. We call it 
component 1 and designate it with the subscript 
1, and express other concentrations as moles per 
kilogram of component 1. Moles per mole of 
component 1 would do equally well. Component 
2 is the non-diffusible component which may be 
treated as a single component even when it is not 
homogeneous for we can determine only the av­
erage values of its molecular weight, valence and 
effects on the various potentials.6 We indicate 
other diffusible components by higher odd nu­
merals or by capital letters, and diffusible species, 
including ions, by lower case letters. It is con­
venient both for experiments and for calculations 
to keep the pressure constant on the side contain­
ing the non-diffusible component. The constant 
pressure on the side containing non-diffusible sol­
ute is p. The pressure on the side of variable pres­
sure is p', so that p — p' is the osmotic pressure P. 
The superscript ° indicates the limit as P or m2 ap­
proaches zero, and the superscript °° indicates the 
standard state of atmospheric pressure and each 
m equal to zero. The superscript ' will be used 
when distinction is necessary to indicate the solu­
tion without non-diffusible component. 

At equilibrium the chemical potential of each 
diffusible component is the same on the side of 
constant pressure as on the side of varying pres­
sure, and the change in chemical potential with 
concentration of non-diffusible component is also 
the same on the two sides. At constant tempera­
ture the independent variables may be chosen as 
the pressure and the molalities of the components. 
We will use derivatives with round d's to indicate 
that each of these variables not specifically men­
tioned is kept constant, and derivatives with 
square d's to represent the total change at equilib­
rium. Then for any diffusible component K, if 
J is also any diffusible component 

d**K , s droj pMK _ d&_ bit*. , s dmj bit*. . 
d»H J dmt 6ntj " Am2 dp' l Amx dmj * ' 

multiplying by WK and summing for all the diffus­
ible components gives 

(5) We reserve the higher even numerals for non-diffusible com­
ponents in case the composition is known from independent measure­
ments. 
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Further differentiation of equation 4 yields 
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If we define the non-diffusible component so tha t 
one mole of component 2 contains one mole of 
non-'diffusible species, we may define the poten­
tials with no further loss of generality by the equa­
tions 

(6) ^ , = In W2 + Si V11 In w, + ft + ^f/RT 

= In W2 + S1 v2\ In (Sj ^J1WJ + ^iW2) + S1 + ^f/RT 
.00 

(7) 
M K ^ 1 t /•> 1 MIi 

= S, *Ki In (S j j-jiWj + * a mi) + PK + MIi0V-R^ 

in which v->t is the number of moles of species i in 
one mole of component 2, and ^Ki is the number 
of moles of species i in one mole of component K, 
H00 is the value of n in the s tandard s tate a t the 
same temperature and pressure, and /3 is the excess 
chemical potential divided by RT, so t ha t 

ft = In Ta (8) 
fe = S1 VKi In 7K (9) 

if 7 is the activity coefficient, or the mean activity 
coefficient of the ions of an ionized component. 

Then 
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These correspond to the relation 

- W i ^ RT = 1 + Si y2i + ,S22W2 + SKf tKwK (14) 

We also use the relations 

- dp ' /dwj = dP /dw 2 

bliybp' = F K and SKwK V'K = V'm (15) 

in which Vk is the partial molal volume of com­
ponent K, so t h a t Vm is the volume of the solution 
on the side of variable pressure which contains one 
kilogram of component 1. 

The Limiting Osmotic Pressure Law 

At the limit of zero concentration of component 
2, the two solutions are identical so tha t each WK 
= mk = ml; and V'm = Vfn. Then equation 3 
becomes 

. ^B. = — ya 4. s (Am _ dwj\ , 
2 6m2 dw2 ™ \dw 2 dw 2 / K owj 

or 

1 + W 2 S i ^ + 
Wi dw2 J?r + 

RT 2] V d w 2 
^ - ^ ) s K w K g 

d W 2 ^ 

(16) 

(17) 

Van' t Hoff's law of osmotic pressure may be 
written 

APV" 
1 = 

Am1RT 
(18) 

The necessary conditions for equation 17 to reduce 
to equation 18 are t h a t 

„ ^a 0 j (Ami d w j \ , OMK 
W2 Si —, ft2w2 and I -. - j - i SKwK ^r- , 

Wi \ d W 2 d W 2 / OWj 

vanish as mi approaches zero. 
The condition tha t the first shall vanish is tha t the 

non-diffusible component shall contain no diffus­
ible species which is not contained in one of the 
diffusible components. This condition offers no 
real difficulty except when the non-diffusible spe­
cies is electrically charged and none of the diffus­
ible components is ionized. In this case there is 
usually a more serious difficulty caused by a reac­
tion which is called membrane hydrolysis in aque­
ous solutions. The water reacts with the non-dif­
fusible component to form an acid and a base, one 
of which is diffusible. Similar reactions m a y occur 
in non-aqueous systems. 

The condition tha t the second term shall vanish 
is the same as the condition tha t Raoul t ' s law 
shall hold in a solution without other solute, as in 
equation 13 with each m-g. except m\ equal to zero. 
The Debye theory tells us tha t a t very low ionic 
strengths few^ is proportional to the square root 
of m<i if component 2 contributes to the ionic 
strength, but t ha t it is proportional to m% for non-
electrolytes or for electrolytes a t larger values of 
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the ionic strength. If the ion concentration is 
high enough to prevent difficulties due to mem­
brane hydrolysis, ft or any /3K may be expanded 
in a Taylor series in W2. 

Since SK?»K jp4 is zero by the Gibbs-Duhem 

relation, a sufficient condition for the third term 

to vanish is t ha t each ( ^ - - ^ f ) be finite. I t 

is possible to keep each Wj (or each m'j) constant 
and to choose component 1 so t h a t each dm'j/dm» 
(or each dm-j/dm^) is less than m)/mi. Equat ion 
18 for any mixed solvent has, therefore, the same 
validity as the other laws of dilute solutions. 

The Distribution of Solute 

Substi tut ing equations 11, 12 and 18 in equa­
tion 1 a t the limit as W2 goes to zero yields 

Si mr + ftK + vi -

_ S j ( i i ! L ^ y ( S i ^ + ^ K % o ) (19) 

Each Vs. and each /3JK may be determined from 
independent measurements in the absence of com­
ponent 2 and the membrane. The values for 
many solutions of single salts are known_as well 
as a few values for mixed solutions. F K and 
Vm may easily be determined for any mixture, 
and a method has been given6 for determining the 
approximate value of /3jK from /3JJ and /3KK-

The 
remaining variables are 02K and (d -In (mj /mj ) / 
dw2) for each diffusible component. If the distri­
butions are measured, |82K can be determined from 
a single equation. If the 0s are known and the 
distribution is to be determined, it is necessary to 
use simultaneously the K — 1 equations for all 
the diffusible components except component 1. 
The X ' t h equation which was eliminated in the 
summation may be considered to correspond to 
the first component, for which dwi and dwi are 
obviously zero. 

If there are only two diffusible components, 1 
• and K, equation (19) reduces to 

T ' " " M i a 0 I V K _ 
* - ^ T + AK + yr -

in which VK = Si ̂ Ki • 
Experiments indicate tha t the distribution of a 

diffusible solute may be represented by the simple 
expression 

— In » K / O T K = b%xw% = biK W%m2 (21) 

in which W2 is the concentration of component 2 in 
grams per kilogram of component 1, and Wi is i ts 
number average molecular weight. Application 
of Taylor 's theorem yields, with equation 20 

(6) G Scatchard, Chem Rev., 19, 309 (1936). 

biKW, = -
'd in W K > 
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> ™? . (22) 

VK + 0 K K WJ0K 

For small molecules, or salts with small ions, 
VK/ V^n is less than the experimental error. 
For aqueous serum albumin and sodium chloride, 
0k ranges from 40 to 80 while VK/Vli is less 
than 0.02. 

There is a great convenience in defining com­
ponent 2 so tha t the total number of moles of this 
component is the same as the number of moles of 
non-diffusible species, while the total charge on 
the component must be zero. We therefore define 
the number of moles of the diffusible species i 
in one mole of the non-diffusible component 2, 
pa as 

V2i = - 22ZiOTiVSjZj2Wi0 (23) 

in which Z; is the valence of the species i. Then 
the total number of moles in one mole of the non-
diffusible component, Sv2, is 

Z2SiZiOT;0 , 
S P 2 = 1 — (24) 

SjZj2OTj0 

The second equality follows because the solution 
is electrically neutral, so SjZiWi0 = 0. The com­
ponent is electrically neutral since 

Z2S1Z1
2OTi0 

z 2 ^ . i... n = Z2 — Z2 = U 
SjZj2OTj0 

Then equation 22 becomes 

hKW2 = ffl2K + VK/Vl 
VK + |3KKOTK 

which for small diffusible ions reduces to 

/3°2K = hKW2 (VK + & K m%) 

(25) 

(26) 

(27) 

Osmotic Pressure at Moderate Concentrations 

In the limit of OT2 approaches zero, equation 5 
becomes 
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Experimental observation shows t ha t the os­
motic pressure of protein solutions may often be 
represented up to rather high concentrations by 
the equation 
P = Aif2 (1 -f Bw2) = Aw2 + ABwI = 

AW2mi + AfiWhul (S)) 
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For other protein solutions the expression 
Aw2 

P = Aw2 + Bw2P = 1 - Bw2 
= Aw2 + ABw2

1 •+• 

1 - Bw2 
= AW2In2 + ABWlml + 

AB*W\m\ 
1 - BW2IIt2 

(31) 

Application of Taylor's theorem yields, with equa­
tion 18 

AW, 

and with equation 29 

2BW2 = ^ A = 

\dmJo 
RT 

1 n, 
(32) 

SjOT1Zi1 + fa -

\dm2 Am2)
 K \ Am2 Am2Jx ™? / 

«_ VldmK ,AW2AVL 
2^KVgAmT + TL W (33) 

The last two terms are usually negligibly small in 
solutions of proteins and moderately small diffus­
ible solutes or ions. For two diffusible compo­
nents, 1 and K, this then becomes 

2BW2 = 
SiOTjZi' + 

. /dmK Amky/vK , , \ fe -Is-^Jw + 0KK) 
(34) 

—, + fti2 — Pdm°K (35) 
SjOTiZj2 ' " ~ »K + / S 1 J V K O T K 

Buffer solutions offer difficulties of interpreta­
tion, which arise from the fact that it is not pos­
sible to tell the valence of the protein component, 
or the concentrations of the buffer components, 
when there is a possibility of a reaction 

P + H+B=H+P -f- B 

in which P and B are the basic forms of the protein 
and of the buffer, and H + P and H + B are the acid 
forms, each with a net charge one unit more posi­
tive than the corresponding base. These difficul­
ties do not interfere with the determination of the 
molecular weight, and there are many approxi­
mate methods for determining the extent of the 
neutralization reaction. However, the uncertain­
ties in any method appear to be of the same order 
as the other quantities we wish to determine. 

Mixed Non-diffusible Components 
If there are two or more non-diffusible com­

ponents, it is of interest to discuss their behavior 
in terms of the mole fractions, such as XM — « N / 
SMff»N, and of the weight fractions, such as ^M = 
WN/2N^N- 2a. ft and ftic, are linear functions of 
either fraction, while Wi is linear in the mole frac­
tion and I/Ws is linear in the weight fraction. 
Although Z2

2 is a quadratic function of either frac­
tion, it may be calculated from the valence of the 
various components. On the other hand, /322 is a 
quadratic for which each cross product must be 
determined in a binary mixture. The resulting 
coefficients in equations 21, 32 and 34, omitting 
the volume term in the latter, are 

A2 = (Kr/F?J/2N*NlPN = (.RT/V'JZyx/Ws (36) 

2B2 = 

btK - ( 2 N X N W N & N K ) / ( 2 M * M W M ) 

2MN2MZN*M*N 

(37) 

CNWN) L 
+ 2MN£MN*M*N -

(ZNSNWN) L 2 ^ 2 " * ! 0 

{1ml 'Ami) W + &KK)jj 
1 _ pMN(8M/WM)(zN /^N)yMyN 

( S N J W W N ) L Si2J
2OTj' + 

(S-^y(S+*")]» 
S M N d S M N / W M W N ) ^ ^ -

(IOT K > 

Aw2J 

Both Ai and 2>2K are linear functions of the y's 
and can therefore be determined by measurements 
on solutions of the single components. A2B^ is a 
quadratic function, of which the Donnan term 
can be determined from measurements on solu­
tions of the single components but the non-ideal 
term requires one measurement on each binary 
mixture, preferably at about equal weight frac­
tions. The generalization to the case of several 
non-diffusible components and several diffusible 
components is obvious but complicated. 

Membrane Potentials 
The membrane potential cannot be obtained 

from any treatment which chooses neutral mole­
cules as the components. If the ions are chosen as 
the components, there will be one more compo­
nent than if neutral molecules are chosen. To 
compensate there will be a new equation of condi­
tion, automatically satisfied if neutral molecules 
are chosen, restricting the compositions to those 
which make each phase electrically neutral so that 
the quantity of one ion is fixed if the quantities of 
all the other ions are known. The equations for 
the chemical potentials contain a new variable 
which we will call e. We will give the subscript w 
to the non-diffusible ion. Then 

Hr/RT = In OT2 + /Sr + ISTW/RT + £ Z2 

^/RT - In »»k + /Jk + niP/RT + e zk 

These p's are what Guggenheim calls "electro­
chemical potentials," and are the only potentials 
of the ions we nee,d consider. 

The quantity e is related to the membrane 
potential, Em, by the equation 

Em = RT^ - S)/F 
in which F is the faraday. If Em and the distribu­
tion of each diffusible ion is measured and if each 
/3y for diffusible ions is already known, e and each 
fti is determined. Then the measurement of the 
osmotic pressure determines £ „ . 

The assumptions necessary to interpret an ex­
perimental measurement as Em are the same as 
those necessary to interpret a similar measurement 
as determining a single ion activity. If the hydro­
gen electrode with saturated potassium chloride 
bridge and calomel electrode measures the activ­
ity of the hydrogen ion, it follows that a silver-
silver chloride electrode with saturated potassium 
chloride bridge and calomel electrode measures 
the activity of the chloride ion, and also that two 

file:///dmJo
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saturated potassium chloride bridges with calomel 
electrodes, one on each side of the membrane, 
measure the membrane potential. 

It is simpler to measure this potential by a pH 
determination in each of the two solutions if the 
pH. is stable in each, or to use an electrode rever­
sible to some ion present in moderately high con­
centration. If we have the four cells 

H2, solution B, KCl (sat.), Hg2Cl2(S), Hg(I) (I) 
Hg(I), Hg2Cl2(S), KCl (sat.), solution A, H2 (II) 
H2, solution A, membrane, solution B, H2 (III) 
Hg(I), Hg2Cl2(S), KCl (sat.), solution A1 membrane, solu­

tion B, KCl (sat.), Hg2Cl2(S), Hg(I) (IV) 

passing a current through I, II and III in series 
produces the same change in state as passing the 
same current through IV. So the sum of the 
electromotive forces of I, II, and III must equal 
that of IV. However, the equilibrium electro­
motive force of III is zero, so the sum for I and II 
must equal the electromotive force of IV. 

From equations 6 and 7 it follows that 

ft = /ST + S1VaA 

ftc •" SiVRiA 

fta ™ /Sn- + 2S1V2I /S„i + SiiVji^jftj 

ftac *• SiVKiflj-i + SijV2iVKj/3ij 
•BKJ = SijVKiVJjAj 

The derivatives of the activity coefficients of the 
neutral molecule components are easily calculated 
from those of the ions. The inverse calculation 
requires the knowledge of one ft, which may be 
obtained from measurements with a saturated po­
tassium chloride bridge. /Sy cannot be uniquely 
determined because it is impossible to add the 
single ions independently. So we obtain only such 
results as (vi/Ski + Pj/3y) with V1 and v} so chosen 
that (i/iZj + VjZf) is zero. Perhaps our most im­
portant conclusion regarding membrane potentials 
is that the determination of a membrane potential 
is equivalent to two determinations of the activ­
ity of a single ion. 

Other Definitions of Non-diffusible Components 
For some purposes it may be desirable to make 

a choice of the non-diffusible component other 
than the one we have chosen. If the new compo­
nent is electrically neutral, it will differ from ours 
by a ceitain number of moles of one or more dif­
fusible components for each mole of non-diffusible 
component. We will designate the new set of func­
tions with stars. The concentration of the non-
diffusible component will be the same in the two 
sets, but its potential will be different. For the 
diffusible components, on the other hand, the po­
tentials will be the same in the two sets, although 
the concentration will usually be different except 
when the concentration of component 2 is zero. 

The most usual case will probably be the defi­

nition of component 2 as the salt with a single 
ion whose valence has the opposite sign to that of 
Z2. From the composition of component 2, it will 
always be possible to calculate dm*/dw*, ftf, ^n 
and each &*j from the corresponding functions in 
the unstarred set. For example, in the case in 
which the protein solution is diluted with sodium 
chloride, which we will call component 3 

dm* Ami _ Jz2] 
Am-i dm 2 2 

03*S = /S2S + |Z>| f>23 + J fttj 

0*3 = ft. + Y ft» 

if 1221 is the absolute value of Z2. For any other 
diffusible species k 

dm{ dmk 
dmt dmj 

02k = ft* + -5" 0»K 

It would be extremely useful to have expressions 
for the potential of a nondiffusible component with 
valence other than Z2, for example of the isoionic 
form with valence zero. The expressions are 
about the same formally as the foregoing, but 
they involve the distribution of an acid or a base 
-and are very much more difficult to correlate with 
experimental measurements. 

Summary 
Equations are derived relating the osmotic 

pressure and the distribution of diffusible solutes 
across a semi-permeable membrane to the varia­
tions of the activities, or potentials, of the compo­
nents with changing composition of the solution, 
particularly with changing concentration of the 
non-diffusible solute. 

It is shown that the conditions necessary for 
van't Hoff's law of osmotic pressure to hold with 
a semi-permeable membrane are essentially the 
same as those for the other generally accepted laws 
of dilute solutions. 

To simplify the relations, the composition is de­
fined so that the total number of moles of the non-
diffusible component is the same as the number of 
moles of the non-diffusible species, but the com­
ponent is electrically neutral even when the spe­
cies is charged. The transformation to other defi­
nitions is shown. 

The equations for the membrane potential and 
other relations involving single ion activities are 
given, and their validity is discussed. 

The equations are extended to mixtures of non-
diffusible components whose concentrations may 
be independently varied. 
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